长距离顶管施工主要技术措施
08-22 13:17:37 浏览次数:561次 栏目:结构设计
标签:组织结构设计,钢结构设计,
长距离顶管施工主要技术措施,http://www.gong66.com
由于第1、第2号中继间已经放置,第3号中继间位置也已确定(因电缆等的长度已定),因而中继间布置从第4只开始调整。
调整后,正常排放管共设置9只中继间,具体布置位置见表3。
表3 中继间位置
中继间
位置(管节后)
间距(m)
累计距离(m)
1
10
30
30
2
42
96
126
3
85
129
255
4
165
240
495
5
250
255
750
6
330
240
990
7
415
255
1245
8
495
240
1485
9
580
255
1740
主顶
310
2050
注:表中间距及累计距离中未计中继间长度,其长度在第9号中继间后计入调整。
顶进至1102.3m时(中继间布置了5只),管节外壁和周围土体的摩阻力为0.5kN/m2左右,波动基本不超过0.1kN/m2。经计算并结合顶进施工的工艺要求,又对中继间的位置作出了调整(因第1至第5号中继间已经放置,因而中继间布置从第6只开始调整)。
调整后,正常排放管共设置8只中继间,具体布置位置见表4。
中继间
位置(管节后)
间距(m)
累计距离(m)
1
10
30
30
2
42
96
126
3
85
129
255
4
165
240
495
5
250
255
750
6
372
366
1116
7
472
300
1416
8
557
255
1671
主顶
379
2050
注:表中间距及累计中未计中继间长度,其长度在第8号中继间后计入调整。
由于先后两次根据实际情况调整了原来的中继间布置,最终只设置了8只中继间,节约了大量的资金,也减少了后期处理工作。
3.测量及轴线控制
在顶进过程中,经常对顶进轴线进行测量,检查顶进轴线是否和设计轴线相吻合。在正常情况下,每顶进1节混凝土管节测量1次,在出洞、纠偏、到达终点前,适当增加测量次数。施工时还要经常对测量控制点进行复测,以保证测量的精度。
随着顶进距离的不断增长,轴线偏差测量需接站观测,从而产生接站误差。因此顶进前按不同的顶进里程,制定了相应的轴线平面偏差测量方法;高程偏差测量采用水准接站测量,先测得工具管中心标高,再与设计高程相比较就可得高程偏差。
另外,指示轴线在顶进工程中,必须利用联系三角形法定期进行复测,以保证整个顶进轴线的一致性。
为了较好地解决测量用时问题,要尽可能减少测量接站数,在转站处利用特殊发光源作为目标,再利用放大倍率较大的瑞士T2经纬仪观测;测定工具管前进的趋势,同样能达到减少测量时间的目的。
在实际顶进中,顶进轴线和设计轴线经常发生偏差,因此要采取纠偏措施,减小顶进轴线和设计轴线间的偏差值,使之尽量趋于一致。顶进轴线发生偏差时,通过调节纠偏千斤顶的伸缩量,使偏差值逐渐减小并回至设计轴线位置。
施工过程中,及时了解工具管的趋势对纠偏十分有利。如果轴线偏差较小,且趋势较好(沿设计方位),就可省去不必要的测量和纠偏,提供更多的顶进时间;如轴线偏差较小,但工具管前进趋势背离设计轴线方向,则要及时进行有效的纠偏,使工具管不致偏离较大。 测量采用高精度的全站仪,激光经纬仪和水准仪。工具管内设有坡度板和光靶,坡度板用于读取工具管的坡度和转角,光靶用于激光经纬仪进行轴线的跟踪测量。
图4-1、图4-3是根据施工过程的轴线偏差绘制的曲线,图4-2、图4-4是竣工后的轴线偏差曲线。
图4-1 施工过程轴线水平偏差曲线
图4-2 竣工后轴线水平偏差曲线
图4-3 施工过程轴线高程偏差曲线
图4-4 竣工后轴线高程偏差曲线
从图4可以看出,竣工后的测量结果与顶进过程中的测量数据基本上是吻合的,说明所采用的测量方法是合适的,测量精度能够满足施工的要求。
4.纠旋转的技术措施
正常排放管前300m(100节管书)的平直线段内,共布置了16只垂直顶升口,垂直顶升口对旋转有很高的要求,转角不得超过1°,否则就会影响垂直顶升的施工,因此,控制好前300m管道的旋转十分重要。
为了减小管节之间的相互转动,在前300m范围内的管节的两端设置了止转装置。通过止转装置将前300m管道连接成一个整体,从而减小整段管道在顶进过程中的旋转。
虽然安装了止转装置,但由于施工过程中管道受力不均衡,管道还是产生了比较大的转角,为此,施工时根据各垂直顶升口的转角大小,辅以一定数量的压重块纠正转角,这种方法效果很明显。顶进结束时,16只垂直顶升口的转角均控制在允许的范围内。
5.水力机械化施工
正常排放管的顶进距离为2060m,因此泥水系统的配置相当关键,根据本工程的特点布置了泥水系统。沉淀池利用工地原有的虾塘,进行必要的加深,留有足够的容量,筑坝分隔成清水池和泥浆池,并用φ300钢管连通泄水。在清水池旁设置2台5级泵,向管路供水,进水管路采用φ150无缝钢管、卡箍式活络接头,中继间处用橡胶波纹管过渡,以适应中继间之伸缩,满足顶管施工的工艺要求。
实际施工时,前1500m是利用清水池旁2台并联的清水泵供水,1500m以后才用多级泵供水。这样配置的好处是节约了大量的能源,也降低了施工时的操作难度。
,长距离顶管施工主要技术措施
由于第1、第2号中继间已经放置,第3号中继间位置也已确定(因电缆等的长度已定),因而中继间布置从第4只开始调整。
调整后,正常排放管共设置9只中继间,具体布置位置见表3。
表3 中继间位置
中继间
位置(管节后)
间距(m)
累计距离(m)
1
10
30
30
2
42
96
126
3
85
129
255
4
165
240
495
5
250
255
750
6
330
240
990
7
415
255
1245
8
495
240
1485
9
580
255
1740
主顶
310
2050
注:表中间距及累计距离中未计中继间长度,其长度在第9号中继间后计入调整。
顶进至1102.3m时(中继间布置了5只),管节外壁和周围土体的摩阻力为0.5kN/m2左右,波动基本不超过0.1kN/m2。经计算并结合顶进施工的工艺要求,又对中继间的位置作出了调整(因第1至第5号中继间已经放置,因而中继间布置从第6只开始调整)。
调整后,正常排放管共设置8只中继间,具体布置位置见表4。
中继间
位置(管节后)
间距(m)
累计距离(m)
1
10
30
30
2
42
96
126
3
85
129
255
4
165
240
495
5
250
255
750
6
372
366
1116
7
472
300
1416
8
557
255
1671
主顶
379
2050
注:表中间距及累计中未计中继间长度,其长度在第8号中继间后计入调整。
由于先后两次根据实际情况调整了原来的中继间布置,最终只设置了8只中继间,节约了大量的资金,也减少了后期处理工作。
3.测量及轴线控制
在顶进过程中,经常对顶进轴线进行测量,检查顶进轴线是否和设计轴线相吻合。在正常情况下,每顶进1节混凝土管节测量1次,在出洞、纠偏、到达终点前,适当增加测量次数。施工时还要经常对测量控制点进行复测,以保证测量的精度。
随着顶进距离的不断增长,轴线偏差测量需接站观测,从而产生接站误差。因此顶进前按不同的顶进里程,制定了相应的轴线平面偏差测量方法;高程偏差测量采用水准接站测量,先测得工具管中心标高,再与设计高程相比较就可得高程偏差。
另外,指示轴线在顶进工程中,必须利用联系三角形法定期进行复测,以保证整个顶进轴线的一致性。
为了较好地解决测量用时问题,要尽可能减少测量接站数,在转站处利用特殊发光源作为目标,再利用放大倍率较大的瑞士T2经纬仪观测;测定工具管前进的趋势,同样能达到减少测量时间的目的。
在实际顶进中,顶进轴线和设计轴线经常发生偏差,因此要采取纠偏措施,减小顶进轴线和设计轴线间的偏差值,使之尽量趋于一致。顶进轴线发生偏差时,通过调节纠偏千斤顶的伸缩量,使偏差值逐渐减小并回至设计轴线位置。
施工过程中,及时了解工具管的趋势对纠偏十分有利。如果轴线偏差较小,且趋势较好(沿设计方位),就可省去不必要的测量和纠偏,提供更多的顶进时间;如轴线偏差较小,但工具管前进趋势背离设计轴线方向,则要及时进行有效的纠偏,使工具管不致偏离较大。 测量采用高精度的全站仪,激光经纬仪和水准仪。工具管内设有坡度板和光靶,坡度板用于读取工具管的坡度和转角,光靶用于激光经纬仪进行轴线的跟踪测量。
图4-1、图4-3是根据施工过程的轴线偏差绘制的曲线,图4-2、图4-4是竣工后的轴线偏差曲线。
图4-1 施工过程轴线水平偏差曲线
图4-2 竣工后轴线水平偏差曲线
图4-3 施工过程轴线高程偏差曲线
图4-4 竣工后轴线高程偏差曲线
从图4可以看出,竣工后的测量结果与顶进过程中的测量数据基本上是吻合的,说明所采用的测量方法是合适的,测量精度能够满足施工的要求。
4.纠旋转的技术措施
正常排放管前300m(100节管书)的平直线段内,共布置了16只垂直顶升口,垂直顶升口对旋转有很高的要求,转角不得超过1°,否则就会影响垂直顶升的施工,因此,控制好前300m管道的旋转十分重要。
为了减小管节之间的相互转动,在前300m范围内的管节的两端设置了止转装置。通过止转装置将前300m管道连接成一个整体,从而减小整段管道在顶进过程中的旋转。
虽然安装了止转装置,但由于施工过程中管道受力不均衡,管道还是产生了比较大的转角,为此,施工时根据各垂直顶升口的转角大小,辅以一定数量的压重块纠正转角,这种方法效果很明显。顶进结束时,16只垂直顶升口的转角均控制在允许的范围内。
5.水力机械化施工
正常排放管的顶进距离为2060m,因此泥水系统的配置相当关键,根据本工程的特点布置了泥水系统。沉淀池利用工地原有的虾塘,进行必要的加深,留有足够的容量,筑坝分隔成清水池和泥浆池,并用φ300钢管连通泄水。在清水池旁设置2台5级泵,向管路供水,进水管路采用φ150无缝钢管、卡箍式活络接头,中继间处用橡胶波纹管过渡,以适应中继间之伸缩,满足顶管施工的工艺要求。
实际施工时,前1500m是利用清水池旁2台并联的清水泵供水,1500m以后才用多级泵供水。这样配置的好处是节约了大量的能源,也降低了施工时的操作难度。
,长距离顶管施工主要技术措施
下一篇:盾构推进过程中障碍桩的拔除技术
++《长距离顶管施工主要技术措施》相关文章
- › 长距离顶管施工主要技术措施
- › 长距离顶管施工总结
- 在百度中搜索相关文章:长距离顶管施工主要技术措施
- tag: 暂无联系方式, 结构设计,组织结构设计,钢结构设计,工程资料 - 结构设计